Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
International Journal of Advanced Manufacturing Technology ; 125(9-10):4027-4045, 2023.
Article in English | Web of Science | ID: covidwho-2308109

ABSTRACT

Nowadays, new challenges around increasing production quality and productivity, and decreasing energy consumption, are growing in the manufacturing industry. In order to tackle these challenges, it is of vital importance to monitor the health of critical components. In the machine tool sector, one of the main aspects is to monitor the wear of the cutting tools, as it affects directly to the fulfillment of tolerances, production of scrap, energy consumption, etc. Besides, the prediction of the remaining useful life (RUL) of the cutting tools, which is related to their wear level, is gaining more importance in the field of predictive maintenance, being that prediction is a crucial point for an improvement of the quality of the cutting process. Unlike monitoring the current health of the cutting tools in real time, as tool wear diagnosis does, RUL prediction allows to know when the tool will end its useful life. This is a key factor since it allows optimizing the planning of maintenance strategies. Moreover, a substantial number of signals can be captured from machine tools, but not all of them perform as optimum predictors for tool RUL. Thus, this paper focuses on RUL and has two main objectives. First, to evaluate the optimum signals for RUL prediction, a substantial number of them were captured in a turning process and investigated by using recursive feature elimination (RFE). Second, the use of bidirectional recurrent neural networks (BRNN) as regressive models to predict the RUL of cutting tools in machining operations using the investigated optimum signals is investigated. The results are compared to traditional machine learning (ML) models and convolutional neural networks (CNN). The results show that among all the signals captured, the root mean squared (RMS) parameter of the forward force ( F-y ) is the optimum for RUL prediction. As well, the bidirectional long-short term memory (BiLSTM) and bidirectional gated recurrent units (BiGRU), which are two types of BRNN, along with the RMS of F-y signal, achieved the lowest root mean squared error (RMSE) for tool RUL, being also computationally the most demanding ones.

2.
Mol Aspects Med ; : 101142, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2232525

ABSTRACT

Topics expected to influence personalized medicine (PM), where medical decisions, practices, and treatments are tailored to the individual patient, are reviewed. Lack of discrimination due to different biological conditions that express similar values of numerical variables (ambiguity) is regarded to be a major potential barrier for PM. This material explores possible causes and sources of ambiguity and offers suggestions for mitigating the impacts of uncertainties. Three causes of ambiguity are identified: (1) delayed adoption of innovations, (2) inadequate emphases, and (3) inadequate processes used when new medical practices are developed and validated. One example of the first problem is the relative lack of medical research on "compositional data" -the type that characterizes leukocyte data. This omission results in erroneous use of data abundantly utilized in medicine, such as the blood cell differential. Emphasis on data output ‒not biomedical interpretation that facilitates the use of clinical data‒ exemplifies the second type of problems. Reliance on tools generated in other fields (but not validated within biomedical contexts) describes the last limitation. Because reductionism is associated with these problems, non-reductionist alternatives are reviewed as potential remedies. Data structuring (converting data into information) is considered a key element that may promote PM. To illustrate a process that includes data-information-knowledge and decision-making, previously published data on COVID-19 are utilized. It is suggested that ambiguity may be prevented or ameliorated. Provided that validations are grounded on biomedical knowledge, approaches that describe certain criteria - such as non-overlapping data intervals of patients that experience different outcomes, immunologically interpretable data, and distinct graphic patterns - can inform, at personalized bases, earlier and/or with fewer observations.

3.
Biomark Med ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2009812

ABSTRACT

Introduction: The enzyme lactate dehydrogenase (LDH) is a good marker of general hyperinflammation correlated with mortality for COVID-19, and is therefore used in prognosis tools. In a current COVID-19 clinical randomized trial (CRT), the blood level of LDH was selected as an inclusion criterion. However, LDH decreased during the pandemic; hence, the impact of this decrease on the prognostic value of LDH for mortality was evaluated. Methods: Data on LDH levels in 843 patients were obtained and analyzed. Relative risk, standard error and receiver operating characteristic curves were calculated for two cutoff values. Results: Relative risk lost validity and the area under the curve narrowed by trimester during the pandemic. Conclusion: The progressive decrease in LDH impacted the capacity to predict mortality in COVID-19. More studies are needed to validate this finding and its implications.

4.
Biomedicines ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1938689

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.

5.
Ieee Access ; 10:59068-59077, 2022.
Article in English | Web of Science | ID: covidwho-1895883

ABSTRACT

Twitter has been an important platform for people to discuss and share health-related information. It provides a massive amount of data for real-time monitoring of infectious diseases (such as COVID-19) and freeing disease-prevention organizations from the tedious labor involved in public health surveillance. Personal health mention (PHM) detection is one of the critical methods to keep up-to-date on an epidemic's condition;it attempts to identify a person's health condition based on online text information. This paper explores PHM identification for COVID-19 through Twitter. We built a COVID-19 PHM data set containing tweets annotated with four types of COVID-19-related health conditions. A masked attention model was devised to classify the tweets as self-mention, other-mention, awareness, and non-health. We obtained promising results on the PHM identification task. The classification results facilitate timely health monitoring and surveillance for digital epidemiology. We also evaluate how the attention mechanism and training method affect the model's predictive performance.

6.
Life (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325725

ABSTRACT

Identifying prognostic biomarkers and risk stratification for COVID-19 patients is a challenging necessity. One of the core survival factors is patient age. However, chronological age is often severely biased due to dormant conditions and existing comorbidities. In this retrospective cohort study, we analyzed the data from 5315 COVID-19 patients (1689 lethal cases) admitted to 11 public hospitals in New York City from 1 March 2020 to 1 December. We calculated patients' pace of aging with BloodAge-a deep learning aging clock trained on clinical blood tests. We further constructed survival models to explore the prognostic value of biological age compared to that of chronological age. A COVID-19 score was developed to support a practical patient stratification in a clinical setting. Lethal COVID-19 cases had higher predicted age, compared to non-lethal cases (Δ = 0.8-1.6 years). Increased pace of aging was a significant risk factor of COVID-related mortality (hazard ratio = 1.026 per year, 95% CI = 1.001-1.052). According to our logistic regression model, the pace of aging had a greater impact (adjusted odds ratio = 1.09 ± 0.00, per year) than chronological age (1.04 ± 0.00, per year) on the lethal infection outcome. Our results show that a biological age measure, derived from routine clinical blood tests, adds predictive power to COVID-19 survival models.

7.
J Pers Med ; 10(3)2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-1224052

ABSTRACT

An accurate diagnosis of Alzheimer's disease (AD) currently stands as one of the most difficult and challenging in all of clinical neurology. AD is typically diagnosed using an integrated knowledge and assessment of multiple biomarkers and interrelated factors. These include the patient's age, gender and lifestyle, medical and genetic history (both clinical- and family-derived), cognitive, physical, behavioral and geriatric assessment, laboratory examination of multiple AD patient biofluids, especially within the systemic circulation (blood serum) and cerebrospinal fluid (CSF), multiple neuroimaging-modalities of the brain's limbic system and/or retina, followed up in many cases by post-mortem neuropathological examination to finally corroborate the diagnosis. More often than not, prospective AD cases are accompanied by other progressive, age-related dementing neuropathologies including, predominantly, a neurovascular and/or cardiovascular component, multiple-infarct dementia (MID), frontotemporal dementia (FTD) and/or strokes or 'mini-strokes' often integrated with other age-related neurological and non-neurological disorders including cardiovascular disease and cancer. Especially over the last 40 years, enormous research efforts have been undertaken to discover, characterize, and quantify more effectual and reliable biological markers for AD, especially during the pre-clinical or prodromal stages of AD so that pre-emptive therapeutic treatment strategies may be initiated. While a wealth of genetic, neurobiological, neurochemical, neuropathological, neuroimaging and other diagnostic information obtainable for a single AD patient can be immense: (i) it is currently challenging to integrate and formulate a definitive diagnosis for AD from this multifaceted and multidimensional information; and (ii) these data are unfortunately not directly comparable with the etiopathological patterns of other AD patients even when carefully matched for age, gender, familial genetics, and drug history. Four decades of AD research have repeatedly indicated that diagnostic profiles for AD are reflective of an extremely heterogeneous neurological disorder. This commentary will illuminate the heterogeneity of biomarkers for AD, comment on emerging investigative approaches and discuss why 'precision medicine' is emerging as our best paradigm yet for the most accurate and definitive prediction, diagnosis, and prognosis of this insidious and lethal brain disorder.

8.
Int J Biol Sci ; 17(3): 897-910, 2021.
Article in English | MEDLINE | ID: covidwho-1154779

ABSTRACT

HSPA5 (BiP, GRP78) has been reported as a potential host-cell receptor for SARS-Cov-2, but its expression profiles on different tissues including tumors, its susceptibility to SARS-Cov-2 virus and severity of its adverse effects on malignant patients are unclear. In the current study, HSPA5 has been found to be expressed ubiquitously in normal tissues and significantly increased in 14 of 31 types of cancer tissues. In lung cancer, mRNA levels of HSPA5 were 253-fold increase than that of ACE2. Meanwhile, in both malignant tumors and matched normal samples across almost all cancer types, mRNA levels of HSPA5 were much higher than those of ACE2. Higher expression of HSPA5 significantly decreased patient overall survival (OS) in 7 types of cancers. Moreover, systematic analyses found that 7.15% of 5,068 COVID-19 cases have malignant cancer coincidental situations, and the rate of severe events of COVID-19 patients with cancers present a higher trend than that for all COVID-19 patients, showing a significant difference (33.33% vs 16.09%, p<0.01). Collectively, these data imply that the tissues with high HSPA5 expression, not low ACE2 expression, are susceptible to be invaded by SARS-CoV-2. Taken together, this study not only indicates the clinical significance of HSPA5 in COVID-19 disease and cancers, but also provides potential clues for further medical treatments and managements of COVID-19 patients.


Subject(s)
COVID-19/complications , Gene Expression Profiling , Heat-Shock Proteins/genetics , Neoplasms/complications , COVID-19/virology , Case-Control Studies , Endoplasmic Reticulum Chaperone BiP , Humans , Neoplasms/metabolism , Neoplasms/virology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL